
W1MJ FOX2  

Automated Transmitter for Hidden Transmitter Hunts 
 
Updated 9/22/2023 
Eliot Mayer, W1MJ 
fox@w1mj.com 
 

Contents 
Introduction .................................................................................................................................................. 2 

Design Overview ......................................................................................................................................... 3 

Assembly ..................................................................................................................................................... 4 

Circuit Board Assembly ...............................................................................................................................4 

Software Installation....................................................................................................................................7 

Battery Eliminator Modifications (Optional) ..................................................................................................8 

Antenna Assembly ......................................................................................................................................9 

Circuit Board Enclosure (Optional) ..............................................................................................................9 

Final Assembly .........................................................................................................................................10 

Message Creation & Installation .............................................................................................................. 13 

Configuration ............................................................................................................................................. 14 

Deployment ............................................................................................................................................... 15 

Fox Circuit Board Design .......................................................................................................................... 16 

Pico Power Supply ....................................................................................................................................16 

Transmit Audio Interface ...........................................................................................................................17 

PTT Circuit ...............................................................................................................................................17 

Receive Audio Detection Circuit ................................................................................................................17 

Battery Monitor .........................................................................................................................................17 

PC Board ..................................................................................................................................................17 

Software Design Overview ....................................................................................................................... 18 

Choice of Programming Language ............................................................................................................18 

Pico Storage Usage ..................................................................................................................................19 

Use of Artificial Intelligence .......................................................................................................................19 

CircuitPython Modules ..............................................................................................................................20 

Program Outline........................................................................................................................................21 

Software Design Details ........................................................................................................................... 21 

Time .........................................................................................................................................................21 

MP3 Decoding ..........................................................................................................................................22 

PWM Output .............................................................................................................................................22 

Analog Input .............................................................................................................................................24 

Software Development Tools ................................................................................................................... 24 

 

mailto:fox@w1mj.com


 

Introduction 
 
The W1MJ FOX2 is an automated transmitter designed for use in hidden transmitter hunts.  These 
hunts are also known in the amateur radio community as fox huntsi.  The fox plays pre-recorded 
audio messages at regular intervals using a low-cost VHF/UHF FM transceiver.  FOX2 is an update 
to the original W1MJ fox, with the following features: 

• Transmits a sequence of mp3 message files, one per minute (configurable), then repeats 

• Has two modes of operation, each allowing longer deployment between battery charges than 
the original design (which ran 24/7): 

o Scheduled Mode:  Limits transmissions to scheduled daily hours 

o On-Demand Mode:  Transmits upon request for 1 hour (configurable); activated by 
audio on the fox frequency. 

• Periodically announces the battery voltage. 

• Stops transmitting when the battery voltage is critically low. 
 
This article provides: 

• Information for building, configuring, and deploying a W1MJ FOX2.  

• Description of the fox hardware and software design 
 
 



Design Overview 
 
Figure 1 shows a block diagram of the fox.   
 
Figure 1  -  Fox Block Diagram 

Battery
12.8V

Switching VREG,
P/O Bat Elim

Linear 
VREG,

Rpi Pico

Voltage 
Divider

Xcvr
UV-5R

Raspberry
Pi

Pico

PTT_PI

PWM_AUDIO

Xcvr
Inter-
Face

PTT

TX_AUDIO

P/O 
Bat
Elim

W1MJ Fox2 Circuit Board

RF

Fox Box
Block Diagram Rev E

Antenna

UHF 
Barrel

BAT_
MON

+5V

+7.5VBAT+

Buttons
HOUR, MIN, RUN

RX_AUDIORX_DET

Micro
USB

 
 
The main components are listed in Table 1. 
 
Table 1  -  Main Components 

Component Manufacturer Part Number  Cost * Comments

Battery, 12.8V 30AH 

LiFePO4 Bioenno BLF-1230A  $    280.00 

Smaller battery can be used if 

operating xcvr at low power or for 

shorter duration.

Transceiver, VHF/UHF 

FM, 4-watts Baofeng UV-5R  $      25.85 

Battery Eliminator Baofeng BL-5  $      18.49 

Fox2 Circuit Board Homebrew N/A  $      33.86 See Circuit Board section

Case Pelican 1200 Black  $      54.95 

J-Pole Antenna Homebrew $0.00 See Antenna section

UHF Barrel From Stock

Cables From Stock See Final Assembly section  
 
* The costs are shown for my fox.  Some prices may have gone up since then, but the transceiver 
price has amazingly continued to drop. 
 
While the battery is pricey, mine has multiple uses, such as supplying emergency power for other 
amateur radio equipment and 12-volt gadgets.  The second most expensive item is the case, but 



Pelican has a good reputation, and this case has protected the fox through multiple deployments in 
varying weather conditions. 
 
The transceiver, battery eliminator, and case were purchased from Amazon.  The battery was 
purchased from Powerwerx.  All the components for the circuit board, including the PC board, were 
purchased from Digi-Key. 
 
The transceiver was selected for: 

• low price, 

• availability of “Battery Eliminator” to power radio from an external power source, and 

• Interfacing information available online. 
 
The Raspberry Pi Pico was selected because: 

• very little support circuitry is needed to implement all the desired features, and 

• programming was fairly easy using CircuitPython. 
 
For design details, see the Fox Circuit Board Design and Software Design sections. 
 

Assembly 
 

Circuit Board Assembly 
 
Assembly using ESD precautions is advised due to the CMOS circuitry in the Pico. 
 
A prototyping board would probably suffice for this fox circuitry.  However, to reinforce the Altium 
Designer training that I received at work, I opted to create a custom printed circuit board.  I had a 
limited quantity of extra bare boards at the time of writing this article; if interested, contact me at 
fox@w1mj.com. 
 
The Bill of Material (parts list) is detailed in Table 2.  All these parts are available from Digi-Key, 
though I purchased the Pico from Adafruit with the header pins installed (Adafruit Product ID 5525).  
 
Figure 2  -  Raspberry Pi Pico with Header Pins 

  
 

https://www.altium.com/altium-designer
https://www.altium.com/altium-designer
mailto:fox@w1mj.com
https://www.adafruit.com/product/5525


For ease of assembly all components are through-hole.  Unfortunately, the board does not have 
mounting holes for resistor R9; it must be tacked onto the bottom the board as shown in Figure 3.  
Otherwise, assembly is straightforward. 
 
 
Table 2  -  Bill of Material, Circuit Board 

Description Designator Qty Manufacturer Manufacturer Part # 

Raspberry Pi Pico A1 1 Raspberry Pi Raspberry Pi Pico 

CAP CER 2.2UF 25V X5R RADIAL C1, C9 2 TDK FG28X5R1E225KRT06 

CAP 2.2UF TANT C2 1 Kyocera AVX TAP225K016SRW 

CAP CER 0.1 UF 50V X7R RADIAL C3, C4 2 Kemet C320C104K5R5TA 

CAP CER 0.01 UF 50V X7R RADIAL C7 1 Kemet C315C103K5R5TA 

CAP CER 10UF 25V X5R RADIAL C8 1 TDK FG28X5R1E106MRT06 

DIODE SCHOTTKY 20V 1A 1N5817-T D1 1 Diodes Inc 1N5817-T 

DIODE SCHOTTKY 100V 150MA DO35 D2, D3 2 STMicroelectronics BAT46 

TERM BLK 4POS J1 1 On Shore Technology EDX555/4DS 

TERM BLK 6POS RADIO INTFC J2 1 On Shore Technology OSTVN06A150 

N-Channel Enhancement-Mode MOSFET Q1 1 Microchip TN0702N3-G 

RES AX 4.7K 5% 1/4W R1 1 Yageo RS125 (Kit) 

RES TRIMPOT 1K 0.5W TOP ADJ R2 1 Bourns 3296P-1-102LF 

RES AX 220 5% 1/4W R5 1 Yageo RS125 (Kit) 

RES AX 4.22K 1% 1/4W R6 1 Yageo MFR-25FBF52-4K22 

RES AX 1K 1% 1/4W R7 1 Stackpole RNMF14FTC1K00 

RES AX 47K 5% 1/4W R8 1 Yageo RS125 (Kit) 

RES AX 150K 5% 1/4W R9 1 Yageo RS125 (Kit) 

Pushbutton Switch, Right Angle SW1-SW3 3 C&K PN11SHNA03QE 

Pushbutton, Black SW1 (Hour) 1 C&K G004A 

Pushbutton, Gray SW2 (Min) 1 C&K G004G 

Pushbutton, Black SW3 (Run) 1 C&K G004R 

VREG 5V 250mA L4931CZ50-AP U1 1 STMicroelectronics L4931CZ50-AP 

PC Board None 1 Digi-Key (DK Red) 
3237-PCB_BARE_BOARD-
ND 

 



Figure 3  -  Assembly Drawing, Rev 0A 

 
 
For a photo of the assembled board, see Figure 7 in the Final Assembly section. 
 



Software Installation 
 
Software may be installed at the end of circuit board assembly.  It can be done later, but not if the 
circuit board is in an enclosure with no access to the BOOTSET button.  There are two basic steps 
that must be performed in order: 

1. Install CircuitPython. 

2. Install the fox software and audio files. 
 
CircuitPython Installation 
 
The official instructions for installing CircuitPython are found at here.  The steps using a Windows PC 
are: 

1. Download the file Raspberry Pi Pico version of CircuitPython from here. 

2. Connect a USB cable to the Pico’s Micro USB port; don’t plug the other end into the PC yet. 

3. Press and hold down the BOOTSEL button on the Pico. 

 

4. Connect the USB cable to the PC. 

5. Wait a few seconds, then release the BOOTSEL button. 

6. Open File Explorer and confirm the presence of drive “RPI-RP2”. 

7. Using File Explorer, copy the downloaded CircuitPython (.uf2) file to RPI-RP2. 

8. Wait a few seconds, then verify that drive RPI-RP2 has been replaced by a new drive named 
“CIRCUITPY (E:)” or similar.  This drive will now be referred to as “the Pico”. 

 
Fox Software Installation 
 
Download the fox software, file code.py, from https://github.com/eliotmayer/W1MJ_Fox2, and copy it 
to the Pico.  The Pico drive should now show a file named code.py. 
 
One of the messages in the /talk folder is battery_voltage_is.mp3.  You should replace this with a file 
of the same name that has your own call, e.g. “The K1MJC fox battery voltage is”.  In other words, 
don’t bootleg my call! 
 
The rotating set of audio messages transmitted by the fox are not considered to be part of the 
software.  See the Message Creation & Installation section. 
 
 

https://learn.adafruit.com/welcome-to-circuitpython/installing-circuitpython
https://circuitpython.org/board/raspberry_pi_pico/
https://github.com/eliotmayer/W1MJ_Fox2


Battery Eliminator Modifications (Optional) 
 
The Battery Eliminator can be used without modifications, as was done in the original W1MJ fox.  But 
there are a few disadvantages: 

1. A car power receptacle (AKA cigarette lighter socket) must be added to the cabling. 

2. The car power connectors are not extremely reliable; on one of my deployments, I had to jiggle 
the connection to make the fox function. 

3. The receptacle and the coiled cable take up a lot of space in the fox box. 
 
The alternative is to open up the eliminator’s plug, remove the 12V tip and the coil cord, and solder 
the DC wiring directly to the battery eliminator circuit board, as shown below.  Cut the wire from 
battery case just before it starts to coil.  Perhaps that end could be soldered directly to the eliminator 
circuit board, but I added some extra wire. 
 
Figure 4  -  Battery Eliminator Modification 

 
 

 
 
 

https://www.amazon.com/gp/product/B08NVP63QB


Antenna Assembly 
 
The fox uses a twin lead J-Pole antenna – an excellent suggestion from John Flood, N1JAF.  It has 
Velcro cable strap at the top to make it easy to hang from a tree branch during deployment 

The antenna was assembled per this article by WB3GCK:  https://www.qsl.net/wb3gck/jpole.htm 

The feedline is RG58 coax, wrapped 3 times around an Amidon FT140-43 ferrite core to help isolate 
the feedline from the antenna. 
 
Here is related article about twin lead J-pole antenna: 
https://www.arrl.org/files/file/Public%20Service/TrainingModules/jpole-dual-band.pdf 
 
Figure 5  -  J-Pole Antenna 

 
 
 
 

Circuit Board Enclosure (Optional) 
 
Mounting the circuit board in its own box was done primarily for aesthetics.  It probably is not 
necessary, so long as care is taken not to damage the components during final assembly and during 
deployment.  Protection from the elements is already provided by the fox case. 
 

https://www.qsl.net/wb3gck/jpole.htm
https://www.arrl.org/files/file/Public%20Service/TrainingModules/jpole-dual-band.pdf


I used a Hammond 1455B1202RD case.  The PC board width was chosen to fit this case’s integral 
card guides.  The board length was not extended to fit the box, as that would have (1) raised the PC 
board fabrication cost and (2) taken up extra space for anyone wishing to use this board in an 
alternative enclosure.  The extra length of the card guide is instead filled with a scored-off piece of 
inexpensive prototyping board. 
 
The PC board has 4 mounting holes that can accommodate 6-32 screws for use in an alternative 
enclosure. 
 
Figure 6  -  Circuit Board Enclosure 

 
 
 
 

Final Assembly 
 
Connect the components per Figure 1 and Figure 7, noting that: 

• Terminal block J1 has connections for 12VDC input from the battery and output to the radio’s 
battery eliminator (Figure 10) 

• Not all J2 connections to the 2.5mm and 3.5mm radio jacks are used (Figure 10), but hooking 
them up provides some extra mechanical support.  The “TRS” in the silkscreen indicates the 
Tip, Ring, and Sleeve connection for each cable. 

 



Figure 7  -  Assembled Circuit Board with Cables Connected 

 
 
All components fit into the Pelican case, and the foam pieces that come with case are used as 
needed to keep the components from shifting around during transport. 
 



Figure 8  -  Final Assembly 

 
 
 

RADIO 

ENCLOSED CIRCUIT BOARD 

CASE & PACKING FOAM 

BATTERY 
ELIMINATOR 

BATTERY 



Message Creation & Installation 
 
The fox messages must be stored as .mp3 files in the /messages folder.  They will be played in 
alphabetical order, so name them accordingly.  After the last stored message is transmitted, the 
battery voltage will be announced, and then the messages will repeat.   
 
Required .mp3 files for announcing time and voltage are stored separately, in the /talk folder.  Most 
message say the same as the file name, e.g. 45.mp3 says, “forty five”.  Exceptions:  
 
battery_voltage_is:  “The W1MJ fox battery voltage is “. 
on_demand_intro.mp3: “The W1MJ fox has received a request and will be on the air until ”. 
on_demand_end.mp3:  “This is the last fox transmission.  Make a voice request for more.  W1MJ” 
 

 
 
Hi-Fi audio files are not required, which is a good thing given the limited storage capacity of the fox 
memory.  The following MP3 file parameters are recommended: 

• Sample Rate:  16 kHz 

• Channels:  Mono 
 
With these settings, the file size of 20-second messages is approximately 40 kb.  Storage is available 
for at least 20 such messages 
 
Even an 8 kHz sample rate produces acceptable files, and they are half the size of the 16 kHz files.  
This sampling rate is appropriate if one wants to transmit many different messages before they 
repeat.  I think the audio quality was slightly lower than with 16 kHz sampling, but the difference, if 
any, was small.  Figure 9 shows an example of MP3 file rendering for minimum file size using Reaper 
DAW. 
 

https://www.reaper.fm/
https://www.reaper.fm/


Figure 9  -  MP3 File Rendering with Reaper DAW 

 
 

Configuration 
 
Prior to deployment, several configuration settings can be modified by connecting the fox to a 
computer USB port.  The default values are shown in brackets: 

• Message Interval (time between start of transmissions)  [60 seconds] 

• Activation time for Scheduled Mode (daily)  [8:00 AM to 8:00 PM] 

• On-Demand Mode settings: 

o Run time per request  [60 minutes] 

o Minimum RX level  [0.25 volts]   (for BaoFeng UV-5R with volume control at maximum) 



o Minimum duration of request [2.0 seconds] 

• Minimum battery voltage  [12.2 VDC, about 10% charge for LiFePO4 batteries] 

• Battery voltage correction factor (to make announced voltage agree with DMM reading)  
[0.985; if calibration is not of concern, change this to 1.0] 

 
The fox appears as an external drive, and the Settings section is near the top of file “code.py”.  Any 
text editor can be used. 
 
The messages to be transmitted should be configured prior to the initial deployment.  See Message 
Creation. 
 
The transceiver should be configured to the desired frequency and power level.  Its volume control 
should be set to maximum, and the squelch should be set just high enough to prevent opening 
accidentally. 
 
The control board has a trimpot for transmitted audio level.  It should only be necessary to set this 
once, by ear, for normal audio level. 
 

Deployment 
 
Go to the hiding location, which is typically a public location such as conservation land.  Bring a 
separate radio along.   

1. Prior to connecting the battery to the fox at the hiding location, tune the separate radio to the 
fox frequency.   

2. If you have not done so before deployment, set the fox radio to the desired frequency, and set 
its volume control to maximum. 

3. Power up the fox.  You should hear the battery voltage announcement.   

4. Set the time of day to the nearest 5 minutes using the HOUR and MIN buttons.  Each time 
update is sent over the air. 

5. Start operation in the desired mode, as follows: 

• Scheduled Mode:   Press the RUN button briefly (less than 1 second).  Message 
transmission will begin if the current time is within the schedule. 

• Start On-Demand Mode:  Press and hold the RUN button for more than 1 second.  To 
verify operation, make a transmission for 2 seconds or longer on the other radio.  The fox 
should announce that it has received a request. 

 



Fox Circuit Board Design 
 
Figure 10  -  Schematic Diagram, Fox Circuit Board 

 
 
 

Pico Power Supply 
 
I considered using a switching power supply to provide +5V to the Pico.  However, the Pico’s current 
consumption is fairly low, so it didn’t seem worth the complication.  A simple linear regulator was 
used, U1. 
 



Transmit Audio Interface 
 
The high frequency component of the PWM audio is filtered out primarily by R1 and C4.  Trimpot R2 
sets the transmit audio level.  Capacitors C1 and C9 block DC components of the PWM audio and the 
radio mike input, respectively. 
 

PTT Circuit 
 
MOSFET Q1 keys the transmitter PTT when the PTT_PI signal is set high.   
 
From the “Don’t believe everything you read online” department:  I read that the Pico IO ports default 
to inputs with weak pull-downs.  That should prevent any accidental PTT keying.  But it turns out that 
if no program is running, or if the program stops running for any reason, PTT_PI goes into a high 
impedance condition.  That intermittently results in random PTT keying.  This oops was solved by 
adding pull-down R9. 
 
 

Receive Audio Detection Circuit 
 
Received audio is rectified by diode D2.  The positive peaks are stored on C8, which is slowly 
discharged by R8.  The resulting RX_DET signal is measured by one of the Pico’s analog inputs 
when the fox is waiting for requests in the On Demand mode. 
 
 

Battery Monitor 
 
The Pico’s analog inputs measure the range 0 to +3.3 VDC.  Therefore, the battery voltage is reduced 
by voltage divider R6 / R7 for measurement.  The software scales the measurement accordingly, and 
even has a calibration value that can be set to compensate for gain errors caused by the resistors 
and the Pico’s circuitry.  To keep the measurements as accurate over temperature in the field, R6 and 
R7 were selected for low-TCR (temperature coefficient of resistance). 
 
 

PC Board 
 
The circuit is simple enough that it could be assembled onto a prototyping board.  However, I 
received training at work in Altium Designer, and decided to reinforce the training by making a PC 
board for this circuit.   
 
Fabrication cost for a small quantity of boards is reasonable these days.  As with other things, the 
lowest prices are from China.  However, since this was my first-ever computer-designed PCB, I went 
with Digi-Key’s DK Red service to minimize the chance of a communication error if something went 
wrong.  I kept the design rules very conservative so that any future fabrications could be done just 
about anywhere. 
 
Schematic symbols and PCB footprints are available online for many components.  For example, I 
Googled, “altium symbol for raspberry pi pico”, and found https://github.com/amgsus/RPi-Pico-Altium, 
though I tweaked it a bit to my liking.  Many of the symbols could be found right from Digi-Key web 
page for the components that I ordered. 
 

https://github.com/amgsus/RPi-Pico-Altium


My design rule notes: 
 
DKRed Design Rules 
Cheap fab found via Google:  https://www.pcbway.com/orderonline.aspx 
 
Another (from a negative review of PCBWay):  https://jlcpcb.com/ 
(but cannot find all design rules, such as line width) 
 

Parameter DKRed Spec 
PCBWay 

Spec 

W1MJ Fox  

Design Rules 

Minimum Trace Spacing 5 mils (.13 mm) 6 mil 8 mils (0.20 mm) 

Minimum Trace Width 5 mils (.13 mm) 6 mil 8 mils (0.20 mm) 

Hole Plating Thickness 1 mil  (.025 mm)  1 mil (0.03 mm) 

Minimum Drill Size 8 mils (.20 mm)  10 mils (0.25 mm) 

Minimum Via Hole Size 8 mils (.20 mm) 0.3 mm 12 mils (0.30 mm) 

Minimum Via Pad Size 16 mils (.41 mm)  20 mils (0.51 mm) 

Minimum Pad Size 10 mils (.25 mm)  n/a (no SMT parts) 

Accuracy Tolerance 5 mils (.13 mm)  n/a 

 
During layout, I re-assigned the Pico IO pins as needed for easy routing.  This allowed for all routing 
except for GND to be done on the bottom layer.  The top layer is a dedicated ground plane.  
 
For ease of assembly: 

• All components are through-hole 

• Connections to the ground plane have above average thermal relief – fewer, longer, skinnier 
spokes than the Altium Designer default value. 

 
Note to self:  Altium Designer project is on my work laptop in folder Documents\Misc\W1MJ\Fox2. 

 

Software Design Overview 
 

Choice of Programming Language 
 
Python is a popular high-level language.  It is interpreted rather than compiled, which means that one 
can try a new program or bug fix with no extra compiling steps.  Even single lines of code can be run 
in order to master a new command.  Decades ago, interpreted languages were considered too slow 
for serious programming, but this is seldom the case given today’s processor speeds. 
 
MicroPython is a version of Python suitable for microcomputers.  CircuitPython is a variation of 
MicroPython that includes support for MP3 file decoding.  The small files size of MP3 files allows for a 
lot of messages in the small storage space of the Pico (20 messages).  Creating an MP3 decoder 
from scratch looks like a daunting task to me,  so CircutPython was the best choice for the fox.   
 

https://www.digikey.com/en/resources/dkred
https://www.pcbway.com/orderonline.aspx
https://jlcpcb.com/


Pico Storage Usage 
 
Using CircuitPython and MP3 files, the 2 MB of the Pico is utilized as follows: 
 

 
 
 
 

Use of Artificial Intelligence 
 
Beware - AI could steer you in the right direction or in the wrong direction!  Using openai.com, I got 
very different results depending upon what I asked.  The answer to Question 1 was discouraging, and 
wrong.  The answer to Question 2 was fairly good, providing code similar to what I had written, 
though its choice of the audioio module was poor because it is not available on the Pico.  Fortunately, 
similar functionality is available for the Pico in the audiopwmio module. 
 
Question 1:  How can I make a Raspberry Pi Pico play MP3 files? 
 
Answer 1:  The Raspberry Pi Pico, being a microcontroller board, doesn't have the necessary 
hardware and processing power to directly play MP3 files like a computer would…” 
 
Question 2:  Write a circuitpython program to decode and mp3 file and play it using the RP2040 PWM 
output. 
 
Answer 2:   

Here's an example program in CircuitPython to decode and play an MP3 file using the RP2040 PWM 

output: 

https://chat.openai.com/


 

This program uses the RP2040's onboard PWM output and the Adafruit audiomp3 library to decode and 
play an MP3 file. The program assumes that the MP3 file is named "test.mp3" and is located in the same 
directory as the Python script. 

The program first initializes the PWM output pin and opens the MP3 file. It then creates an AudioOut 
object and connects it to the PWM output, and starts playing the decoded audio data using the 

audiocore.DecodedSample class. 

The program then waits for the playback to finish by checking the AudioOut object's "playing" property 

in a loop. Once the playback has finished, the program stops the PWM output and sets the output pin to 
a low state. 

Answer 2 was much better.  The audiomp3 part is spot on.  Unfortunately, the audioio module is not 
supported for the Pico, but the audiopwmio module serves the same purpose. 
 
 

CircuitPython Modules 
 
The CircuitPython modules are detailed here:  https://docs.circuitpython.org/en/latest/shared-bindings 
 
Each module has an expandable “Available on these boards” list, and not all modules are available 
on the Pico. 
 

https://docs.circuitpython.org/en/latest/shared-bindings


 

Program Outline 
 

1. Import modules 

2. Settings (message interval, start & stop times, etc) 

3. Define Functions 

4. Initialization 

a. IO Port assignments 

b. Miscellaneous initialization tasks 

5. Set time (buttons, voice feedback via radio) 

    Buttons:  Hour, Min (5-min increments), Run (long push for On Demand Mode) 

5.  Message Loop 

a.  During scheduled time, with OK battery voltage: 

i. Transmit all messages sequentially 

ii. Measure and transmit battery voltage 

iii. Repeat 

b. In On Demand Mode, wait for new request 
 

Software Design Details 
 

Time 
 
Ref:  time module, https://docs.circuitpython.org/en/latest/shared-bindings/time/index.html 
 
It wasn’t clear from the available information, but the Pico behaves as if has a fairly accurate real-time 
clock.  At power up, it thinks that it is the start of the year 2020.  The fox uses pushbuttons to allow 
setting of the correct time of day to the nearest 5 minutes; it ignores the date.  It uses these functions 
from the time module: 

• time.time() returns the number of seconds since the beginning of 1970. 

• time.localtime(t) converts the above time into a structure (year, month, day, etc.) 

• time.sleep(t) waits for the specified time in seconds. 

 
The fox adds setting t_power_up_hr_min [hour, min] to the initial time of day (midnight at 

power up).  With the default value of [8,0], and the fox just powered up, the time setting begins at 8:00 
AM instead of 12:00 AM. 
 

https://docs.circuitpython.org/en/latest/shared-bindings/time/index.html


Key time variables: 

• t_now:  Current time in seconds, from time.time() with correction per the time setting buttons.  

It is limited to 5 minute increments in order to limit the number of mp3 files needed to 
announce the time. 

• t_correction:  The correction factor to be added to time.time() to create t_now at various 

points in the program. 
 
In order to easily keep track of the daily start and stop times for transmissions, the program includes 
function time_of_day_mins(t) to convert time to the time of day in minutes.  It recognizes the 

input t as either an integer (such as t_now) or an [hour, min] list (such as t_start_hr_min). 

 
 

MP3 Decoding 
 
CircuitPython’s audiomp3 module makes mp3 decoding easy.  For details, see 
https://learn.adafruit.com/mp3-playback-rp2040, but ignore the hardware section and scroll down to 
the software part. 
 
Unfortunately, there is a noticeable glitch at the end of the message due to the sudden shift in 
average DC level from 1.65V to 0.  The IO port goes into a high-impedance state, so I tried biasing 
the output to 1.65V with a voltage divider (3.3V – 180K – 180K – GND).  That didn’t help because the 
MP3 function brings the port to 0V for a brief time before it goes to high impedance.  The glitch is 
somewhat annoying, but livable.  A potential option is to time the PTT cleverly against the beginning 
(easy) and end (not so easy) of the mp3 files. 
 

PWM Output 
 
The decoded mp3 audio files are output in PWM (pulse-width modulation) format using 
CircuitPython’s audiopwmio module.  There is apparently no control over the PWM parameters, but 
this is not a problem.  During development, I observe a fixed-frequency, pulse-width modulated 
output, running at approximately 122 kHz . 
 
Scope traces:  

1. IO Port GP0:  Fixed-frequency, pulse-width modulated output, running at approximately 122 
kHz . 

2. Audio output using the passive filter circuit shown below. 

https://learn.adafruit.com/mp3-playback-rp2040


 

 
 
 
As above, zoomed out in time to show voice waveform on Trace 2.  With this simple passive filter, 
there is still a small 122 kHz component, which will hopefully be ignored by the transmitter.   

 
 



The following PWM filter was used for the scope photos.  For audible tests, lower resistor R2 is 470Ω 
to provide a level suitable for listening with a Honeytone guitar amp.  The final filter design is shown in 
the Fox Circuit Board Design section.   

 
 
 

Analog Input 
 
CircuitPython’s analogio module makes it easy to read the battery voltage and receiver audio levels.  
See https://learn.adafruit.com/circuitpython-essentials/circuitpython-analog-in. 
 
 
 

Software Development Tools 
 
The Mu Editor, recommended by Adafruit, works well. 
 
Visual Studio Code works with the CircuitPython extension but is more complicated to use.  Unlike 
the Mu Editor, the VS Code Terminal window does not automatically figure out the COM port.  One 
has to do this: 

• Start the command palette (Ctrl + Shift + P) 

• Type “serial” then click CircuitPython: Select Serial Port 

 

• Select the Raspberry Pi Pico 

https://learn.adafruit.com/circuitpython-essentials/circuitpython-analog-in


 

• From the “serial” list (above) it may also be necessary to click “CircuitPython: Open Serial 
Monitor”. 

 
When all is set, the Terminal window behaves like the Serial window in Mu Editor. 
 

 
 
 
 
 
 

 
i https://en.wikipedia.org/wiki/Transmitter_hunting 
 

https://en.wikipedia.org/wiki/Transmitter_hunting

